If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1.80x+0.109=0
a = 1; b = 1.80; c = +0.109;
Δ = b2-4ac
Δ = 1.802-4·1·0.109
Δ = 2.804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.80)-\sqrt{2.804}}{2*1}=\frac{-1.8-\sqrt{2.804}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.80)+\sqrt{2.804}}{2*1}=\frac{-1.8+\sqrt{2.804}}{2} $
| 6–6x=5x–9x-2 | | 3x-7-2/3-(9x-6)=15 | | 2x+3x–16=45 | | x^2+1.80x+0.117=0 | | 4x+7–2x=x–25 | | -9=2t+3=-3 | | (4x+8)=9x+16) | | -4x–12=3(-3x+6) | | 10x+3=4x+7 | | 95-x=85 | | -2=t+34 | | |2+x|=7 | | 5(3x+17)=95 | | 1/4x-13=1/4(x=13) | | x+(+16)=-14 | | -2x+10=2(-1+5)+1 | | -2x+10=2(-1+5)1 | | x*(7+x)=72 | | -36+3x=96 | | -1/2x-15=-16 | | J^2-5j-14=0 | | 2x+3x+5(2x-3)=15(x-1) | | 2(f-3)+2=8 | | -23+6x=-30 | | 25x-225=1200 | | 4y+18=2y+24 | | -8k=k-21 | | b+2/7=11 | | 3p+13=–17 | | x+(-23)=+19 | | (x-2)180/x=156 | | 8x−20+3x−5=90 |